Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1285516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075222

RESUMO

Exploring the role of the gut microbiome in oncology is gaining more attention, mainly due to its ability to shape the immune system in cancer patients. A well-balanced microbial composition forms a symbiotic relationship with the host organism. Mounting evidence supports the potential of modifiable lifestyle factors, such as diet and physical activity, in restoring intestinal dysbiosis related to cancer development and treatment. In this Minireview, we describe the host-microbiome interplay following different dietary patterns, including a high-fat diet, fiber-rich diet, diet rich in rice and beans, Mediterranean diet, ketogenic diet, and physical activity in preclinical findings and clinical settings. According to the results, nutrition is a critical factor influencing the composition of gut microbial communities. Therefore, knowledge about the patient's nutritional status in pre-treatment and treatment becomes crucial for further management. A combination of individualized dietary habits and professional training plans might help to maintain gut homeostasis, potentially improving the response to anti-cancer therapy and the quality of life in cancer survivors. However, a deep understanding of underlying mechanisms and large clinical trials are needed to uncover clinically relevant correlations for personalized treatment approaches leading to better outcomes for cancer patients.

2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139030

RESUMO

Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.


Assuntos
Microbioma Gastrointestinal , Microbiota , Células Neoplásicas Circulantes , Humanos , Animais , Camundongos , Células Neoplásicas Circulantes/patologia , Carcinogênese , Sistema Imunitário/patologia
3.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188990, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742728

RESUMO

Treatment resistance, together with acute and late adverse effects, represents critical issues in the management of cancer patients. Promising results from preclinical and clinical research underline the emerging trend of a microbiome-based approach in oncology. Favorable bacterial species and higher gut diversity are associated with increased treatment efficacy, mainly in chemo- and immunotherapy. On the other hand, alterations in the composition and activity of gut microbial communities are linked to intestinal dysbiosis and contribute to high treatment-induced toxicity. In this Review, we provide an overview of studies concerning gut microbiota modulation in patients with solid and hematologic malignancies with a focus on probiotics, prebiotics, postbiotics, and fecal microbiota transplantation. Targeting the gut microbiome might bring clinical benefits and improve patient outcomes. However, a deeper understanding of mechanisms and large clinical trials concerning microbiome and immunological profiling is warranted to identify safe and effective ways to incorporate microbiota-based interventions in routine clinical practice.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Probióticos , Humanos , Prebióticos , Transplante de Microbiota Fecal , Probióticos/uso terapêutico , Neoplasias/terapia , Neoplasias/microbiologia , Assistência ao Paciente
4.
Cancers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174123

RESUMO

Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.

5.
Microorganisms ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38257851

RESUMO

Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.

6.
Front Oncol ; 12: 1063100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505811

RESUMO

The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.

7.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008915

RESUMO

Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Microbioma Gastrointestinal , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia , Animais , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614080

RESUMO

DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.


Assuntos
Neoplasias Hematológicas , Leucemia , Linfoma , Síndromes Mielodisplásicas , Humanos , Metilação de DNA , Decitabina , Epigênese Genética , Prognóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia/diagnóstico , Leucemia/tratamento farmacológico , Leucemia/genética , Azacitidina/uso terapêutico , Neoplasias Hematológicas/genética , Linfoma/diagnóstico , Linfoma/tratamento farmacológico , Linfoma/genética
9.
Microorganisms ; 11(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36677399

RESUMO

Pre-clinical models and clinical studies highlight the significant impact of the host-microbiota relationship on cancer development and treatment, supporting the emerging trend for a microbiota-based approach in clinical oncology. Importantly, the presence of polymorphic microbes is considered one of the hallmarks of cancer. The epigenetic regulation of gene expression by microRNAs affects crucial biological processes, including proliferation, differentiation, metabolism, and cell death. Recent evidence has documented the existence of bidirectional gut microbiota-microRNA interactions that play a critical role in intestinal homeostasis. Importantly, alterations in microRNA-modulated gene expression are known to be associated with inflammatory responses and dysbiosis in gastrointestinal disorders. In this review, we summarize the current findings about miRNA expression in the intestine and focus on specific gut microbiota-miRNA interactions linked to intestinal homeostasis, the immune system, and cancer development. We discuss the potential clinical utility of fecal miRNA profiling as a diagnostic and prognostic tool in colorectal cancer, and demonstrate how the emerging trend of gut microbiota modulation, together with the use of personalized microRNA therapeutics, might bring improvements in outcomes for patients with gastrointestinal cancer in the era of precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...